
JAVA GRAPHICS ANIMATION

In this exercise we'll start writing a program to make a
ball bounce on the screen ...

We start off with all of the normal stuff:

package graphics;

import hsa2.GraphicsConsole;
import java.awt.Color;

public class Bounce1 {

public static void main(String[] args) {
//and we start writing our program here

}
}

But graphics programs end up using a lot of objects,
so we write the program using the constructor of the class:

package graphics;

import hsa2.GraphicsConsole;
import java.awt.Color;

public class Bounce1 {
public static void main(String[] args) {

new Bounce1();
}

//this is called a constructor. We'll learn about them later.
Bounce1() {

}
}

Add needed global variables.
(These are important once the program is split up into different parts, called

methods or functions, that all need to access the same data.)

package graphics;
import hsa2.GraphicsConsole;
import java.awt.Color;

public class Bounce1 {
public static void main(String[] args) {

new Bounce1();
}

//Global variables
GraphicsConsole gc = new GraphicsConsole(800,600);
int ballx = 100, bally = 100; //location of ball
int diameter = 40; //diameter of ball
int xspeed = 2; // normally this is set to 2 or 3 pixels. Later, try 35
int yspeed = xspeed;
int sleepTime = 5; //controls speed of animation. Normally 1-10

 Bounce1() { //constructor
}

}

Please use these numbers for
the global variables. They are
the right values to make a
really cool display at the end.

Write the main program
(Notice the while loop)

package graphics;
import hsa2.GraphicsConsole;
import java.awt.Color;

public class Bounce1 {
public static void main(String[] args) {

new Bounce1();
}

//Global variables
GraphicsConsole gc = new GraphicsConsole(800,600);
int ballx = 100, bally = 100; //location of ball
int diameter = 40; //diameter of ball
int xspeed = 2; // normally this is set to 2 or 3 pixels. Later, try 35
int yspeed = xspeed;
int sleepTime = 5; //controls speed of animation. Normally 1-10

Bounce1() { //constructor
 setup();

while(true) { //main animation loop
moveAndDrawBall();
gc.sleep(sleepTime);
/* the final thing in the loop must be “sleep”.
If it doesn't sleep the screen doesn't get redrawn */

}
}

}

Write the setup() method.
Notice that it only runs once (from the constructor), before anything else happens.

package graphics;
import hsa2.GraphicsConsole;
import java.awt.Color;

public class Bounce1 {
public static void main(String[] args) {

new Bounce1();
}

//Global variables
GraphicsConsole gc = new GraphicsConsole(800,600);
int ballx = 100, bally = 100;
int diameter = 40;
int xspeed = 2;
int yspeed = xspeed;
int sleepTime = 5;

Bounce1() {
setup();
while(true) {

moveAndDrawBall();
gc.sleep(sleepTime);

}
}

void setup() {
gc.setAntiAlias(true);
gc.setLocationRelativeTo(null); //centre the window
gc.setColor(Color.RED.darker());

}
}

Move the ball, then draw it.
package graphics;
import hsa2.GraphicsConsole;
import java.awt.Color;

public class Bounce1 {
public static void main(String[] args) {

new Bounce1();
}

//Global variables
GraphicsConsole gc = new GraphicsConsole(800,600);
[...]

Bounce1() {
setup();
while(true) {

moveAndDrawBall();
gc.sleep(sleepTime);

}
}
void setup() {

gc.setAntiAlias(true);
gc.setLocationRelativeTo(null);
gc.setColor(Color.RED.darker());

}

void moveAndDrawBall() {
//gc.clearRect(ballx, bally, diameter, diameter); //uncomment if desired
ballx += xspeed;
bally += yspeed;
gc.fillOval(ballx, bally, diameter, diameter);

}
}

Problems:

● We want the ball to bounce off the sides.
 Try and figure this out. Then we'll go over it as a class.

● It would be nice to make it have a random colour each time it hits the wall.
 After the previous problem is solved, it's easy to get this working

● How would we make a second ball? 20 balls?
 Our single ball has 5 variables (x, y, vx, vy, diam).
 We can't just add dozens of new variables.
 This will require objects …

